

 Navigation

 	
 index

 	MathQuill latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mathquill/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mathquill/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	MathQuill latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 CHANGELOG.html

 Navigation

 		
 index

 		MathQuill latest documentation »

v0.10.1: 2016-03-21

Important fix: remove font-size: 0 on textarea (#585), fixing typing
in Chrome Canary (#540) as well as the Enter key not triggering the
enter handler in Webkit and Blink (#566). transform: scale(0) is
used instead and expected to be much more robust.

(Note: if you’re coming from v0.9.x, there’ve been major API changes,
see the v0.9.x → v0.10.0 Migration Guide [https://github.com/mathquill/mathquill/wiki/v0.9.x-%E2%86%92-v0.10.0-Migration-Guide].)

new features:

		(#544, #552, #558, #581) new symbols \nparallel, \measuredangle,
\odot, \parallelogram (nonstandard), \nless, \ngtr, \square

		(#544) new commands \overleftarrow, \overrightarrow

bugfixes:

		(#585) fix typing in Chrome Canary, Enter key in Webkit+Blink

		(#582) fix \degree symbol to round-trip (rather than exporting
^\circ which doesn’t parse as one symbol)

		(#578) fix .text() to output \cdot as *

		(#529, #571, #574) fix .text() of fractions, spaces, variables followed
by exponents

		(#577) fix \triangle symbol to match LaTeX better

		(#568) hotfix #435 order-dependence breaking clean build on Linux

		(#560) fix florin spacing still too close

		(#546) fix parsing or pasting × (Unicode times symbol)

		(#519/#487) fix auto-horizontal-scroll/pan on API calls

		(#528) fix #429 can’t move cursor out of TextBlock

		(#526) fix exponentiation to export ^ not **

		(#525) fix Tab while there’s a selection

build system fixes:

		(#532) add console output to show URL of local test pages

v0.10.0: 2016-02-20

Many major changes including a total overhaul of the API (no more
auto-MathQuill-ifying of .mathquill-editable etc, and no more jQuery
plugin, instead global MathQuill() returns API objects, like jQuery
itself): See the v0.9.x → v0.10.0 Migration Guide [https://github.com/mathquill/mathquill/wiki/v0.9.x-%E2%86%92-v0.10.0-Migration-Guide]
(https://github.com/mathquill/mathquill/wiki/v0.9.x-%E2%86%92-v0.10.0-Migration-Guide).

(If you already use the new global MathQuill()-based API from the
dev branch, migrating to v0.10.0 should be just [one small change]
(https://github.com/mathquill/mathquill/wiki/%60dev%60-branch-(2014%E2%80%932015)-%E2%86%92-v0.10.0-Migration-Guide)
for you.)

API-only changes:

		(#336, #349, #351, #353) config options architecture

		(#308) don’t auto-MathQuill-ify on jQuery ready

		(#297) prefix all CSS classes with mq-

		(#238, #272, #288, #337, #362, #459, #463, #495) kill jQuery plugin; new
global MathQuill() returns API objects

typist-facing changes:

		(#506) delete \caret and \underscore

		(#453) incremental backspace: backspacing into a compound command like
fraction or exponent goes left into it rather than selecting it

		(#285) render pasted text in math mode if cursor in math mode

		(5cf838d) LiveFraction (typing /) stops at space when expanding left

		(#264) intentional blur (like clicking outside field) clears selection

		(#262, #281, #391, #449, #509) auto-expanding, mis-matchable parens/pipes

		(#259) blue focus ring only around whole field not individual blocks

		(#258) \sum now comes with lower and upper limit blocks

		(#246, #248, #274, #434, #473) merge adjacent SupSubs into one
command

		(#187) delete \vector

		(#144) Shift-Left/Right unselects back into a thing after selecting
out of it

		(#157) stop fractions created by typing / at ,/;/:

new features:

		(#468) add WOFF and WOFF2 font formats

		(#376, #398) add autoSubscriptNumerals option

		(#338) config option sumStartsWithNEquals

		(#321) static math instances may have .innerFields

		(#279) leftRightIntoCmdGoes: 'up'/'down'

		(#278, #407, #442) SupSub options to improve usability

		(#276, #410) anything focusable can be used to substituteTextarea

		(#263) typing <= and >= results in \le and \ge

		(#265) “autocommands”: LaTeX control sequences that automatically
render when you type the letters, without typing backslash first

		(#261, #361, #387, #404) when the math is too wide to fit in the
field, pan/scroll horizontally

		(#247, #301, #255, #509) auto-unitalicize sin, log etc operator names

		(#245, #253) config option whether to Spacebar behaves like Tab

		(#241, #325, #425, #462) new API methods as used by Desmos

		(#191) \class{classname}{math} a la
MathJax [http://docs.mathjax.org/en/v2.2-latest/tex.html#html]

		(#151) \textcolor{color}{math}

new build system features:

		(#377) OMIT_FONT_FACE=true make omits @font-face {...}

		(#319) make basic builds stripped-down MathQuill for basic math

bugfixes:

		(#452) fix blinking blue cursor and autocorrect on iOS

		(#448) fix \ddots to be downward-rightward not upward-rightward

		(#432) fix quadratic-time fragment construction

		(#379) fix .text() errors when currently typing backslash command

		(#364, #367, #363, #397, #402, #417, #472) fixes to spacing and
positioning

		(#323, #365, #409) fix LaTeX for /, {, } ^, _, and ~

		(99da82a) fix LaTeX parsing of '

		(#294, #355) fix Cmd-Left turns selection into typed text in Firefox

		(#296, #392) fix f/florin situation

		(#299) don’t use reserved word yield

		(#284) escape non-ASCII Unicode characters in the JS source code

		(#272) fix API methods .write() on empty LaTeX and .cmd() erroring

		(#255) fix auto-spacing of SupSub and PlusMinus

		(#266) fix keyboard select after mouse select

		(#268) \ not \: as LaTeX for space

		(68c8f2b) fix resize gripper appearing sometimes in Chrome

		(6803077) fix Shift-Enter, Ctrl-Enter inputting newlines

		(f17fb95) fix potential Ctrl-C “copy” race condition

		(765dd70, #322) don’t unnecessarily stopPropagation() mouse events

		(c1fe1ef, 9aef35f) fix up/down in an \editable{} in a fraction

docs:

		(#485) add more metadata to package.json

		(#484) fix links in README

		(#393) correctly credit co-creator @jneen

		(#283) use Mozilla Public License (MPL) instead of LGPL

internal refactors:

		(#303) remove STIX font files, never used them

		(#244) refactor focus/blur out into its own service

		(#240) simplify saneKeyboardEvents() handlers pattern

		(#233, #234, #236, #237, #239, #509) massive refactor of cursor and

		root block nonlocal responsibilities as controller and services instead

		(#195, #340) some LaTeX rendering performance fixes; separate out
root block DOM node from container DOM node

		(#183) Cursor::notify framework

		(#117, #142, #186, #287) massive refactor of cursor methods to not
assume the edit tree is double-layered

v0.9.4: 2014-1-22

URGENT HOTFIX for cursor showing up as an ugly box in Chrome 40 (#371)

bugfixes:

		(#371) fix cursor showing up as an ugly box in Chrome 40

		(#230) fix selecting previously selected static math can’t be copied

		(#217) fix no Array::indexOf in IE<

9, use RegExp::test

		(#213) fix exception on up/down while something is selected

		(#211) fix CSS typo causing no italics when there should be

build system changes:

		(#222 and #228) make server auto-rebuilds without restarting server

		(#212) use empty target trick in Makefile

docs:

		(#283) change license from LGPL to Mozilla Public License

v0.9.3: 2013-11-11

new features:

		(#185) add \vec

bugfixes:

		(#164) displaying NZQRC as \mathbb{NZQRC} (double-struck)

		(#180) can’t type >1 spaces in RootTextBlocks

		(#190) $ at the end of a TextBlock causes errors later

		(#152) when “Select All”-ed, .mathquill('latex') throws

internal refactors:

		rename .end and .endChild both to .ends

build system changes:

		fix make publish to work on BSD

		(#189) replace Connect with tiny handwritten static server

		upgrade to uglifyjs2

v0.9.2: 2013-04-02

NOTE: The hotfix for typing over selections in Safari 5.1 (#135) from
v0.9.1 had a huge bug, fixed as #166.

feature changes:

		(#156) stop LiveFraction at commas/colons/semicolons

bugfixes:

		allow angle bracket as a VanillaSymbol (thanks @fpirsch!)

		(#166) fix selecting after paste

		(#121) editing \text{...} created from LaTeX

		(#122) spacebar was broken in TextBlocks

		(#125) $ in TextBlock was jumping to the end

		stretched parens not being grayed

internal refactors:

		Massive renaming introducing direction constants L and R, and
directionalized methods

		Use a subclass of jQuery with directionalized methods (see d5597e4)

build system changes:

		New site-building system

		no more submodules, npm only

v0.9.1: 2012-12-19

		Started the changelog

		Added a make publish script

		Hotfix for typing over selections in Safari 5.1 (#135)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		MathQuill latest documentation »

MathQuill [http://mathquill.github.com]

by Han [http://github.com/laughinghan], Jeanine [http://github.com/jneen], and Mary [http://github.com/stufflebear] (maintainers@mathquill.com)

Good news! We’ve resumed active development and we’re committed to getting
things running smoothly.Find a dusty corner? Let us know! [image: slackin.mathquill.com]
[image: freenode irc: #mathquill] [http://webchat.freenode.net/?channels=mathquill]

Usage

Just load MathQuill and call our constructors on some HTML element DOM objects,
for example:

<link rel="stylesheet" href="/path/to/mathquill.css"/>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></script>
<script src="/path/to/mathquill.js"></script>

<p>
 Solve ax^2 + bx + c = 0:
 x=
</p>

<script>
 var MQ = MathQuill.getInterface(2);
 MQ.StaticMath($('#problem')[0]);
 var answer = MQ.MathField($('#answer')[0], {
 handlers: {
 edit: function() {
 checkAnswer(answer.latex());
 }
 }
 });
</script>

To load MathQuill,

		jQuery 1.4.3+ [http://jquery.com] has to be loaded before mathquill.js
(Google CDN-hosted copy [http://code.google.com/apis/libraries/devguide.html#jquery] recommended)

		the fonts should be served from the font/ directory relative to
mathquill.css (unless you’d rather change where your copy of mathquill.css
includes them from), which is already the case if you just:

		download and serve the latest release [https://github.com/mathquill/mathquill/releases/latest].

To use the MathQuill API, first get the latest version of the interface:

var MQ = MathQuill.getInterface(2);

Now you can call MQ.StaticMath() or MQ.MathField(), which MathQuill-ify
an HTML element and return an API object. If the element had already been
MathQuill-ified into the same kind, return that kind of API object (if
different kind or not an HTML element, null). Note that it always returns
either an instance of itself, or null.

var staticMath = MQ.StaticMath(staticMathSpan);
mathField instanceof MQ.StaticMath // => true
mathField instanceof MQ // => true
mathField instanceof MathQuill // => true

var mathField = MQ.MathField(mathFieldSpan);
mathField instanceof MQ.MathField // => true
mathField instanceof MQ.EditableField // => true
mathField instanceof MQ // => true
mathField instanceof MathQuill // => true

MQ itself is a function that takes an HTML element and, if it’s the root
HTML element of a static math or math field, returns an API object for it
(if not, null):

MQ(mathFieldSpan) instanceof MQ.MathField // => true
MQ(otherSpan) // => null

API objects for the same MathQuill instance have the same .id, which will
always be a unique truthy primitive value that can be used as an object key
(like an ad hoc Map [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map] or Set [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set]):

MQ(mathFieldSpan).id === mathField.id // => true

var setOfMathFields = {};
setOfMathFields[mathField.id] = mathField;
MQ(mathFieldSpan).id in setOfMathFields // => true
staticMath.id in setOfMathFields // => false

Similarly, API objects for the same MathQuill instance share a .data object
(which can be used like an ad hoc WeakMap [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap] or WeakSet [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet]):

MQ(mathFieldSpan).data === mathField.data // => true
mathField.data.foo = 'bar';
MQ(mathFieldSpan).data.foo // => 'bar'

Any element that has been MathQuill-ified can be reverted:

 some <code>HTML</code>

MQ($('#revert-me')[0]).revert().html(); // => 'some <code>HTML</code>'

MathQuill uses computed dimensions, so if they change (because an element was
mathquill-ified before it was in the visible HTML DOM, or the font size
changed), then you’ll need to tell MathQuill to recompute:

var mathFieldSpan = $('\\sqrt{2}');
var mathField = MQ.MathField(mathFieldSpan[0]);
mathFieldSpan.appendTo(document.body);
mathField.reflow();

MathQuill API objects further expose the following public methods:

		.el() returns the root HTML element

		.html() returns the contents as static HTML

		.latex() returns the contents as LaTeX

		.latex('a_n x^n') will render the argument as LaTeX

Additionally, descendants of MQ.EditableField (currently only MQ.MathField)
expose:

		.focus(), .blur() focuses or defocuses the editable field

		.write(' - 1') will write some LaTeX at the current cursor position

		.cmd('\\sqrt') will enter a LaTeX command at the current cursor position or
with the current selection

		.select() selects the contents (just like on textareas [http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-48880622] and on
inputs [http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-34677168])

		.clearSelection() clears the current selection

		.moveTo{Left,Right,Dir}End() move the cursor to the left/right end of the
editable field, respectively. (The first two are implemented in terms of
.moveToDirEnd(dir) where dir is one of MQ.L or MQ.R, constants that
obey the contract that MQ.L === -MQ.R and vice versa.)

		.keystroke(keys) simulates keystrokes given a string like "Ctrl-Home Del",
a whitespace-delimited list of key values [http://www.w3.org/TR/2012/WD-DOM-Level-3-Events-20120614/#fixed-virtual-key-codes] with optional prefixes

		.typedText(text) simulates typing text, one character at a time

		ᴇxᴘᴇʀɪᴍᴇɴᴛᴀʟ .dropEmbedded(pageX, pageY, options) insert a custom
embedded element at the given coordinates, where options is an object like:

{
 htmlString: '',
 text: function() { return 'custom_embed'; },
 latex: function() { return '\customEmbed'; }
}

		ᴇxᴘᴇʀɪᴍᴇɴᴛᴀʟ .registerEmbed('name', function(id){return options}) allows MathQuill to parse custom embedded objects from latex, where options is an object like the one defined above in .dropEmbedded. This will parse the following latex into the embedded object you defined: \embed{name}[id]}

MathQuill overwrites the global MathQuill variable when loaded. You can undo
that with .noConflict() (similar to [jQuery.noConflict()]
(http://api.jquery.com/jQuery.noConflict)):

<script src="/path/to/first-mathquill.js"></script>
<script src="/path/to/second-mathquill.js"></script>
<script>
var secondMQ = MathQuill.noConflict().getInterface(2);
secondMQ.MathField(...);

var firstMQ = MathQuill.getInterface(2);
firstMQ.MathField(...);
</script>

(Warning: This lets different copies of MathQuill each power their own
math fields, but using different copies on the same DOM element won’t
work. Anyway, .noConflict() is primarily to help you reduce globals.)

Configuration Options

MQ.MathField() can also take an options object:

var el = $('x^2').appendTo('body');
var mathField = MQ.MathField(el[0], {
 spaceBehavesLikeTab: true,
 leftRightIntoCmdGoes: 'up',
 restrictMismatchedBrackets: true,
 sumStartsWithNEquals: true,
 supSubsRequireOperand: true,
 charsThatBreakOutOfSupSub: '+-=<>',
 autoSubscriptNumerals: true,
 autoCommands: 'pi theta sqrt sum',
 autoOperatorNames: 'sin cos etc',
 substituteTextarea: function() {
 return document.createElement('textarea');
 },
 handlers: {
 edit: function(mathField) { ... },
 upOutOf: function(mathField) { ... },
 moveOutOf: function(dir, mathField) { if (dir === MQ.L) ... else ... }
 }
});

To change mathField‘s options, the .config({ ... }) method takes an options
object in the same format.

Global defaults for a page may be set with MQ.config({ ... }).

If spaceBehavesLikeTab is true the keystrokes {Shift-,}Spacebar will behave
like {Shift-,}Tab escaping from the current block (as opposed to the default
behavior of inserting a Space character).

By default, the Left and Right keys move the cursor through all possible cursor
positions in a particular order: right into a fraction puts the cursor at the
left end of the numerator, right out of the numerator puts the cursor at the
left end of the denominator, right out of the denominator puts the cursor to the
right of the fraction; symmetrically, left into a fraction puts the cursor at
the right end of the denominator, etc. Note that right out of the numerator to
the left end of the denominator is actually leftwards (and downwards, it’s
basically wrapped). If instead you want right to always go right, and left to
always go left, you can set leftRightIntoCmdGoes to 'up' or 'down' so that
left and right go up or down (respectively) into commands, e.g. 'up' means
that left into a fraction goes up into the numerator, skipping the denominator;
symmetrically, right out of the numerator skips the denominator and puts the
cursor to the right of the fraction, which unlike the default behavior is
actually rightwards (the drawback is the denominator is always skipped, you
can’t get to it with just Left and Right, you have to press Down); which is
the same behavior as the Desmos calculator. 'down' instead means it is the
numerator that is always skipped, which is the same behavior as the Mac OS X
built-in app Grapher.

If restrictMismatchedBrackets is true then you can type [a,b) and [a,b), but
if you try typing [x} or \langle x|, you’ll get [{x}] or
\langle|x|\rangle instead. This lets you type (|x|+1) normally; otherwise,
you’d get \left(\right| x \left| + 1 \right).

If sumStartsWithNEquals is true then when you type \sum, \prod, or
\coprod, the lower limit starts out with n=, e.g. you get the LaTeX
\sum_{n=}^{ }, rather than empty by default.

supSubsRequireOperand disables typing of superscripts and subscripts when
there’s nothing to the left of the cursor to be exponentiated or subscripted.
Averts the especially confusing typo x^^2, which looks much like x^2.

charsThatBreakOutOfSupSub sets the chars that when typed, “break out” of
superscripts and subscripts: for example, typing x^2n+y normally results in
the LaTeX x^{2n+y}, you have to hit Down or Tab (or Space if
spaceBehavesLikeTab is true) to move the cursor out of the exponent and get
the LaTeX x^{2n}+y; this option makes + “break out” of the exponent and
type what you expect. Problem is, now you can’t just type x^n+m to get the
LaTeX x^{n+m}, you have to type x^(n+m and delete the paren or something.
(Doesn’t apply to the first character in a superscript or subscript, so typing
x^-6 still results in x^{-6}.)

autoCommands, a space-delimited list of LaTeX control words (no backslash,
letters only, min length 2), defines the (default empty) set of “auto-commands”,
commands automatically rendered by just typing the letters without typing a
backslash first.

autoOperatorNames, a list of the same form (space-delimited letters-only each
length>=2), and overrides the set of operator names that automatically become
non-italicized when typing the letters without typing a backslash first, like
sin, log, etc. (Defaults to the LaTeX built-in operator names [http://latex.wikia.com/wiki/List_of_LaTeX_symbols#Named_operators:_sin.2C_cos.2C_etc.], but
with additional trig operators like sech, arcsec, arsinh, etc.)

substituteTextarea, a function that creates a focusable DOM element, called
when setting up a math field. It defaults to <textarea autocorrect=off .../>,
but for example, Desmos substitutes on iOS to
suppress the built-in virtual keyboard in favor of a custom math keypad that
calls the MathQuill API. Unfortunately there’s no universal check for a virtual
keyboard [http://stackoverflow.com/q/2593139/362030], you can’t even detect a touchscreen [http://www.stucox.com/blog/you-cant-detect-a-touchscreen/] (notably
Modernizr gave up [https://github.com/Modernizr/Modernizr/issues/548]) and even if you could, Windows 8 and ChromeOS
devices have both physical keyboards and touchscreens and you can connect
physical keyboards to iOS and Android devices with Bluetooth, so touchscreen !=
virtual keyboard. Desmos currently sniffs the user agent for iOS, so Bluetooth
keyboards just don’t work in Desmos on iOS, the tradeoffs are up to you.

Supported handlers:

		moveOutOf, deleteOutOf, and selectOutOf are called with dir and the
math field API object as arguments

		upOutOf, downOutOf, enter, and edit are called with just the API
object as the argument

The *OutOf handlers are called when Left/Right/Up/Down/Backspace/Del/
Shift-Left/Shift-Right is pressed but the cursor is at the left/right/top/bottom
edge and so nothing happens within the math field. For example, when the cursor
is at the left edge, pressing the Left key causes the moveOutOf handler (if
provided) to be called with MQ.L and the math field API object as arguments,
and Backspace causes deleteOutOf (if provided) to be called with MQ.L and
the API object as arguments, etc.

The enter handler is called whenever Enter is pressed.

The edit handler is called when the contents of the field might have been
changed by stuff being typed, or deleted, or written with the API, etc.
(Deprecated aliases: edited, reflow.)

Handlers are always called directly on the handlers object passed in,
preserving the this value, so you can do stuff like:

var MathList = P(function(_) {
 _.init = function() {
 this.maths = [];
 this.el = ...
 };
 _.add = function() {
 var math = MQ.MathField($('')[0], { handlers: this });
 $(math.el()).appendTo(this.el);
 math.data.i = this.maths.length;
 this.maths.push(math);
 };
 _.moveOutOf = function(dir, math) {
 var adjacentI = (dir === MQ.L ? math.data.i - 1 : math.data.i + 1);
 var adjacentMath = this.maths[adjacentI];
 if (adjacentMath) adjacentMath.focus().moveToDirEnd(-dir);
 };
 ...
});

Of course you can always ignore the last argument, like when the handlers close
over the math field:

var latex = '';
var mathField = MQ.MathField($('#mathfield')[0], {
 handlers: {
 edit: function() { latex = mathField.latex(); },
 enter: function() { submitLatex(latex); }
 }
});

A Note On Changing Colors:

To change the foreground color, don’t just set the color, also set
the border-color, because the cursor, fraction bar, and square root
overline are all borders, not text. (Example below.)

Due to technical limitations of IE8, if you support it, and want to give
a MathQuill editable a background color other than white, and support
square roots, parentheses, square brackets, or curly braces, you will
need to, in addition to of course setting the background color on the
editable itself, set it on elements with class mq-matrixed, and then set
a Chroma filter on elements with class mq-matrixed-container.

For example, to style as white-on-black instead of black-on-white:

#my-math-input {
 color: white;
 border-color: white;
 background: black;
}
#my-math-input .mq-matrixed {
 background: black;
}
#my-math-input .mq-matrixed-container {
 filter: progid:DXImageTransform.Microsoft.Chroma(color='black');
}

(This is because almost all math rendered by MathQuill has a transparent
background, so for them it’s sufficient to set the background color on
the editable itself. The exception is, IE8 doesn’t support CSS
transforms, so MathQuill uses a matrix filter to stretch parens etc,
which anti-aliases wrongly without an opaque background [http://github.com/mathquill/mathquill/wiki/Transforms],
so MathQuill defaults to white.)

Building and Testing

To hack on MathQuill, you’re gonna want to build and test the source files
you edit. In addition to make, MathQuill uses some build tools written on
Node [http://nodejs.org/#download], so you will need to install that before
running make. (Once it’s installed, make automatically does npm install,
installing the necessary build tools.)

		make builds build/mathquill.{css,js,min.js}

		make dev won’t try to minify MathQuill (which can be annoyingly slow)

		make test builds mathquill.test.js (used by test/unit.html) and also
doesn’t minify

		make basic builds mathquill-basic.{js,min.js,css} and
font/Symbola-basic.{eot,ttf}; serve and load them instead for a stripped-
down version of MathQuill for basic mathematics, without advanced LaTeX
commands. Specifically, it doesn’t let you type LaTeX backslash commands
with \ or text blocks with $, and also won’t render any LaTeX commands
that can’t by typed without \. The resulting JS is only somewhat smaller,
but the font is like 100x smaller. (TODO: reduce full MathQuill’s font size.)

Understanding The Source Code

All the CSS is in src/css. Most of it’s pretty straightforward, the choice of
font isn’t settled, and fractions are somewhat arcane, see the Wiki pages
“Fonts” [http://github.com/mathquill/mathquill/wiki/Fonts] and
“Fractions” [http://github.com/mathquill/mathquill/wiki/Fractions].

All the JavaScript that you actually want to read is in src/, build/ is
created by make to contain the same JS cat’ed and minified.

There’s a lot of JavaScript but the big picture isn’t too complicated, there’s 2
thin layers sandwiching 2 broad but modularized layers:

		At the highest level, the public API is a thin wrapper around calls to:

		“services” on the “controller”, which sets event listeners that call:

		methods on “commands” in the “edit tree”, which call:

		tree- and cursor-manipulation methods, at the lowest level, to move the
cursor or edit the tree or whatever.

More specifically:

(In comments and internal documentation, :: means .prototype..)

		At the lowest level, the edit tree of JS objects represents math and text
analogously to how the HTML DOM [http://www.w3.org/TR/html5-author/introduction.html#a-quick-introduction-to-html] represents a web page.
		(Old docs variously called this the “math tree”, the “fake DOM”, or some
combination thereof, like the “math DOM”.)

		tree.js defines base classes of objects relating to the tree.

		cursor.js defines objects representing the cursor and a selection of
math or text, with associated HTML elements.

		Interlude: a feature is a unit of publicly exposed functionality, either
by the API or interacted with by typists. Following are the 2 disjoint
categories of features.

		A command is a thing you can type and edit like a fraction, square root,
or “for all” symbol, ∀

. They are implemented as a class of node objects
in the edit tree, like Fraction, SquareRoot, or VanillaSymbol.
		Each command has an associated control sequence (as termed by Knuth;
in the LaTeX community, commonly called a “macro” or “command”), a token
in TeX and LaTeX syntax consisting of a backslash then any single
character or string of letters, like \frac or \ . Unlike
loose usage in the LaTeX community, where \ne and \neq (which print
the same symbol, ≠

) might or might not be considered the same command,
in the context of MathQuill they are considered different “control
sequences” for the same “command”.

		A service is a feature that applies to all or many commands, like typing,
moving the cursor around, LaTeX exporting, LaTeX parsing. Note that each of
these varies by command (the cursor goes in a different place when moving into
a fraction vs into a square root, they export different LaTeX, etc), cue
polymorphism: services define methods on the controller that call methods on
nodes in the edit tree with certain contracts, such as a controller method
called on initialization to set listeners for keyboard events, that when the
Left key is pressed, calls .moveTowards on the node just left of the cursor,
dispatching on what kind of command the node is (Fraction::moveTowards and
SquareRoot::moveTowards can insert the cursor in different places).
		controller.js defines the base class for the controller, which each
math field or static math instance has one of, and to which each service
adds methods.

		publicapi.js defines the global MathQuill.getInterface() function, the
MQ.MathField() etc. constructors, and the API objects returned by
them. The constructors, and the API methods on the objects they return, call
appropriate controller methods to initialize and manipulate math field and
static math instances.

Misc.:

intro.js defines some simple sugar for the idiomatic JS classes used
throughout MathQuill, plus some globals and opening boilerplate.

Classes are defined using Pjs [https://github.com/jneen/pjs], and the variable _ is used by convention as
the prototype.

services/*.util.js files are unimportant to the overall architecture, you can
ignore them until you have to deal with code that is using them.

Open-Source License

The Source Code Form of MathQuill is subject to the terms of the Mozilla Public
License, v. 2.0: http://mozilla.org/MPL/2.0/

The quick-and-dirty is you can do whatever if modifications to MathQuill are in
public GitHub forks. (Other ways to publicize modifications are also fine, as
are private use modifications. See also: MPL 2.0 FAQ [https://www.mozilla.org/en-US/MPL/2.0/FAQ/])

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

search.html

 Navigation

 		
 index

 		MathQuill latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

